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1. Reproducibility of scienti�c results

Reproducibility of scienti�c results is fundamental to
science. Nevertheless, full reproducibility is still much less
widespread than commonly anticipated. It involves much
more than providing the raw data and a description of how
data have been processed, and even this might not be reg-
ularly available. While some disciplines have realised this
and have come up with work�ows and data pipelines to
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ensure good scienti�c practice, others seem still not aware
of the problem and its dimension. While in a student's
exam, we value the approach higher than the result, in
science, we too often blindly trust the �nal outcome.

Here, we brie�y focus on two aspects of reproducibility
relevant in context of the cwepr Python package and the
underlying ASpecD framework. A more detailed account
is given in [1].

1.1. The two meanings of reproducibility

Reproducibility has two meanings that are relevant to
the scienti�c method. Other scientists should be able to
independently repeat an analysis and ideally come to the
same result, and they should be able to understand each
individual step that has been performed. Repeating an
analysis may be possible given the raw data, the software
in the identical version to that originally used, and the
computer codes employed for the actual analysis.1 Except
of the last point, none of these aspects is trivial. For a
more detailed discussion, see e.g. [2]. Understanding each
individual step of data processing and analysis requires ad-
ditionally that the programs are available in source code
and that each parameter used, implicit and explicit, can
be determined. Eventually, usually at least some com-
puter codes need to be read and understood. While read-
ing one's own code can be challenging already, reading
other people's code requires both, intimate knowledge of
the programming language employed and the code to be
as readable and obvious as possible [3, 4]. Basically, the
whole of software engineering since its origins in the 1960s
[5] is an attempt to develop and provide tools that enhance
readability of code. In short: Scientists are not and will
usually not become software engineers, but they are of-
ten forced to write complex computer codes. To succeed,

1Here, software means both, the programming language and all
libraries used, and computer code refers to the script (or similar)
using the software to perform the data analysis.



they hence require applying at least some of the tools and
principles of software engineering. Most meaningful data
analysis is too complex to be coded by hand, regardless of
the programming language used.

1.2. Scripts vs. library of functions

Generally, two approaches of data processing and ana-
lysis can be distinguished: (i) one script per analysis using
only the vocabulary provided by the programming lan-
guage used, or (ii) a library of more general functions that
can be reused for individual analyses and that abstract
from the underlying code performing the individual steps.

Some people claim that the �rst approach, one script
per analysis, solves the problem of reproducibility and is
hence superior to a library of functions. A closer look
reveals this claim to be unsubstantiated. Every higher
programming language provides some level of abstraction
from the instructions eventually carried out by the com-
puter. Some programming languages are better suited
for scienti�c data analysis than others, as they provide
a rich vocabulary of relevant terms. Nevertheless, one of
the most important and intellectually demanding tasks of
every programmer is to develop a domain-speci�c language
for the problem at hand, providing additional and power-
ful abstractions. Failing to create such domain-speci�c
language results in manually coding the same steps over
and over again. This is both, time consuming and rather
error-prone (typos, copy and paste mentality, loss of over-
sight which erros have been �xed in what version of a
script). Additionally, the readability of such code (often
nick-named `spaghetti code') is clearly insu�cient, pre-
venting others from understanding it with justi�able e�ort
and hence impairing reproducibility.

The only viable way to overcome the problems of scripts
mentioned above is to develop a library of more generally
applicable functions that provide abstractions [6] for indi-
vidual tasks and enhance the vocabulary available in the
programming language, i.e., a domain-speci�c language.
Nowadays, nobody will seriously reimplement basic linear
algebra algorithms, as highly optimised and proven librar-
ies like LAPACK [7] and BLAS [8] are available. The same
is true for much more high-level libraries, e.g. NumPy [9]
and SciPy [10] of the Python Scienti�c Software Stack or
EasySpin [11] for simulating of EPR spectra. All these lib-
raries provide the programmer with essential abstractions
allowing to implement algorithms for particular processing
and analysis steps of data. And all these libraries have in
common that they follow best practices of software engin-
eering and provide unique version numbers for reference,
the latter a necessary prerequisite for reproducibility.

Furthermore, when using a library with functions for
data processing and analysis, all parameters of the indi-
vidual steps need to be recorded automatically, together
with the version of the library, to ensure reproducibility of
the results. However, in context of scienti�c data analysis,
this is nothing the individual researchers should need to

care about, as the analysis as such requires already their
full attention and intellectual capacity.

The Python programming language is designed with
readability in mind, and this is one reason for its wide-
spread adoption (not only) in the scienti�c community.
However, regardless how readable a programming language
as such tries to be: every non-trivial computer program
will consist of at least hundreds of lines of code. Hence,
modularisation is essential, providing the reader with dif-
ferent levels of abstraction and allowing to focus on one
small problem at a time (`separation of concerns' [12]).
This is the opposite of the `one script per analysis' ap-
proach. Developing such a library requires employing at
least some of the tools and concepts of software engineer-
ing. Most essential for reproducibility are a version control
system and a scheme for unique version numbers, besides
code readability [3, 4].

In summary, for computer-based scienti�c data pro-
cessing and analysis to become truly reproducible, tools
need to be available that take care of automatically record-
ing all relevant information while providing a high-level
interface allowing the scientist to focus on the actual task
at hand rather than its implementation in computer code.
Furthermore, taken together these tools need to span the
entire data processing and analysis pipeline.

2. Metadata: Info �le format

As mentioned in the main text, data are represented
within the cwepr package as `datasets', i.e. the unit of (nu-
merical) data and accompanying metadata. While a lot
of crucial parameters are usually recorded by the vendor-
speci�c software and stored in the respective data formats,
some essential information regularly remains unaccounted
for. Examples are details regarding the sample, the pur-
pose of the measurement, and probehead and cooling sys-
tem used. Whether the sample temperature is recorded
depends on the setup used, and benchtop spectrometers
are usually more integrated and therefore tend to record
more parameters. In any case, it is the responsibility of
the scientist performing the measurements to record the
missing information, at best in an electronic format that
can be directly read by the analysis software.

A few essential criteria for developing a �le format for
storing this kind of metadata: (i) easily human-writable
while still machine-readable, (ii) plain text, as this is the
only truly platform-independent and long-term accessible
format, (iii) structured, guiding the user, (iv) self-contained,
i.e. understandable without external documentation.

One such �le format, termed `info �le format' has been
developed by one of the authors and successfully employed
over more than ten years. It is a simple structured text
format that resembles the INI �le format, an example is
given in Listing 1. The format starts with a line provid-
ing information on the �le format. This is crucial, as (i)
reading only the �rst line of the �le is su�cient for �le
format identi�cation, and (ii) metadata formats change
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over time, though rather slowly, due to changing needs.
The remainder of the �le is structured into blocks each
containing a list of key-value pairs. Due to its original use
with MATLAB®-based analysis routines, the format does
not support any special characters beyond the �rst 128
characters encoded in the ASCII table.

Listing 1: Example for an info �le used to store metadata that have
been obtained during data acquisition.

cwEPR Info file - v. 0.1.4 (2020 -01 -21)

GENERAL

Filename: Sa42 -01

Date start: 2021 -03 -13

Date end: 2021 -03 -14

Time start: 15:50:00

Time end: 09:00:00

Operator: John Doe

Label: Sa42 -01

Purpose: First overview

SAMPLE

Name: Random sample

ID: 42

Description: film on substrate

Solvent: N/A

Preparation: drop -cast

Tube: 3.9 x 3 x 250 mm

EXPERIMENT

Type: field -sweep

Runs: 1

Variable parameter: field

Increment: 0.02 mT

SPECTROMETER

Model: Bruker EMX

Software: Xenon 1.3b.5

MAGNETIC FIELD

Field probe type: Hall

Field probe model: xxx

Start: 341.4 mT

Stop: 361.5 mT

Step: 0.02 mT

Sequence: up

Controller: Bruker EMX Field

å Controller

Power supply: Bruker ER 081 (90/30)

BRIDGE

Model: Bruker EMX PremiumX

Controller: Bruker EMX

Attenuation: 20 dB

Power: 2.00 mW

Detection: diode

Frequency counter: Bruker

MW frequency: 9.846977 GHz

Q value: 8300

SIGNAL CHANNEL

Model: Bruker EMX Signal Channel

Modulation amplifier: Bruker EMX Modulation

å Amplifier

Accumulations: 50

Modulation frequency: 100 kHz

Modulation amplitude: 0.1 mT

Receiver gain: 80 dB

Offset: 0.0

Conversion time: 30.00 ms

Time constant: 20.48 ms

Phase: 0 deg

DIGITAL FILTER

Mode: Manual

Number of Points: 0

GONIOMETER

Start: 0 deg

Increment: 10 deg

Number of Points: 19

Fine Tuning per Slice: off

PROBEHEAD

Type: HQ

Model: Bruker 4119HS -W1

Coupling: critical

TEMPERATURE

Temperature: 298 K

Controller: N/A

Cryostat: N/A

Cryogen: N/A

COMMENT

Pretty weak signal , but at least some angular

å dependence visible on first inspection.

The info �le as such can serve as a replacement for a
lab notebook entry, as it contains basically all crucial in-
formation necessary to fully analyse the data. A few �elds
deserve special mentioning: Providing a purpose (in the
�rst block, GENERAL) can be crucial for making use of data
in hindsight, as during data acquisition, particularly when
systematically varying parameters, the purpose of the in-
dividual measurement is obvious, but less so later on. In
the same vein, the last block (COMMENT) should be present
in any format used to store metadata, as it is a common
requirement to note down further information that does
not �t into any of the pre-de�ned �elds. Information that
happens to enter the comment block on a regular base
furthermore provides valuable insight into how to further
develop the format and what �elds to add. A full speci�c-
ation of the info �le format is available online2.

The cwepr Python package has full support for this
�le format, and as the mappings between keys in the info
�le format and the dataset structure of the cwepr Python
package are stored separately from the actual importer,
support for new versions of the info �le does not require
any coding, only adding the mappings to the correspond-
ing (YAML) �le contained within the cwepr package.

As some information stored in the info �le is recorded
by most modern spectrometer control and data acquisiion
software provided by the respective vendor, there is a cer-
tain chance that the information contained in an info �le
deviates from that recorded automatically. Usually, the
automatically obtained data are more authoritative, and
thus it may be convenient to correct the info �le after-

2https://www.till-biskup.de/en/software/info/format
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wards during data processing. To this end, a special re-
porter has been implemented in the cwepr Python package
writing info �les and including all information contained in
a dataset's metadata. As during import of the metadata
into the dataset, the precedence of the automatically re-
corded values has been taken care of, this leads to more
authoritative content of an info �le. Make sure, however,
to use this reporter prior to any data processing altering
the metadata, including microwave frequency correction.
An example is given in Listing 2.

Listing 2: Updating an info �le using the InfofileReporter. Note
that this should be done directly after importing the dataset(s) and
before any processing that may change the dataset's metadata

- kind: report

type: InfofileReporter

properties:

filename: datafilename.info

apply_to:

- datafilename

To repeat the most important aspect of metadata re-
cording and storage: Regardless of the actual �le format
used, it is important to record the missing information
during data acquisition and to provide it in a machine-
readable form for the analysis software.

3. Overview of the cwepr package

This section provides a general overview of the func-
tionality implemented within the cwepr Python package.
For a more detailed user manual, the interested reader is
referred to the extensive user and developer documenta-
tion available online for both, the cwepr package [13] and
the ASpecD framework [14] it is based upon. For details on
how ASpecD and derived packages are implemented, see
Ref. [1]. Here, we brie�y describe the underlying concepts.

One of the particular strengths of the cwepr Python
package is its simple user interface. As the package is based
on the ASpecD framework [14], it supports `recipe-driven
data analysis': The user creates a simple, structured text
�le containing a list of datasets to load and a list of tasks
to perform on these datasets. A �rst example of such a
recipe is provided in Listing 3. Getting served the results
of `cooking' this recipe is as simple as issuing a single com-
mand in the terminal: serve my-recipe.yaml assuming
you have saved the listing to a �le named `my-recipe.yaml'
and installed the cwepr Python package and its dependen-
cies locally. Detailed installation instructions can be found
in the documentation available online [13].

The idea behind recipe-driven data analysis is to reduce
complexity and to allow the user to focus on the actual
science, namely data processing and analysis. Usually, we
have an idea which tasks we want to perform on a dataset,
and we will even have ideas which parameters we would

Listing 3: Example of a recipe used for recipe-driven data analysis
within the cwepr Python package. Here, a list of datasets is followed
by a list of tasks. The user needs no programming skills, but can
fully focus on the tasks to be performed. `Cooking' this recipe is a
matter of issuing a single command on the terminal.

format:

type: ASpecD recipe

version: '0.2'

settings:

default_package: cwepr

datasets:

- /path/to/first/dataset

- /path/to/second/dataset

tasks:

- kind: processing

type: FrequencyCorrection

properties:

parameters:

frequency: 9.5

- kind: processing

type: BaselineCorrection

- kind: singleplot

type: SinglePlotter1D

properties:

filename:

- first -dataset.pdf

- second -dataset.pdf

need for the individual tasks. All this enters the recipe
in a highly structured and obvious way. While the details
of the individual tasks will be discussed below, the recipe
presented in Listing 3 should be pretty self-explanatory
(not only) for a spectroscopist used to dealing with cw-
EPR data.

Often, tasks should only be applied to a subset of the
datasets loaded. Therefore, the list of datasets a task
should operate on can be given explicitly. Otherwise, the
task will operate on all datasets. For details, see the ex-
amples in section 6.

But what about reproducibility? Upon `cooking' the
recipe presented in Listing 3 and serving its results, a his-
tory will be written detailing each individual step. For a
�rst impression, cf. Listing 4. As this is a valid recipe in
itself, it serves a dual purpose: (i) it contains all inform-
ation necessary to fully reproduce the analysis, including
the list and version of all relevant Python packages and all
explicit and implicit parameters, and (ii) it can be used to
automatically rerun the analysis.

3.1. Data import and supported formats

Data are represented within the cwepr package as `data-
sets', i.e. the unit of (numerical) data and accompanying
metadata. As mentioned above, a lot of crucial paramet-
ers are usually recorded by the vendor-speci�c software
and stored in the respective data formats. However, some
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Listing 4: Excerpt of the history automatically written by serving
the example recipe displayed in Listing 3. Notable are the automat-
ically added blocks at the top containing information on the time of
execution as well as the system used, including version numbers of all
relevant Python packages. Furthermore, as the baseline correction
results in di�erent coe�cients for each of the two datasets, those are
separately presented for each individual dataset.

info:

start: '2021-11-26T09 :03:52 '

end: '2021-11-26T09 :03:57 '

system_info:

python:

version: "3.7.3 ..."

packages:

aspecd: 0.6.4

jinja2: 3.0.2

matplotlib: 3.4.3

numpy: 1.21.3

scipy: 1.7.1

oyaml: '1.0'

asdf: 2.8.1

bibrecord: 0.1.0

cwepr: 0.2.0

platform: Linux -4.19.0 -18 -...

user:

login: johndoe

format:

type: ASpecD recipe

version: '0.2'

settings:

default_package: cwepr

# ...

datasets:

- /path/to/first/dataset

- /path/to/second/dataset

tasks:

- kind: processing

type: BaselineCorrection

properties:

parameters:

kind: polynomial

order: 0

coefficients:

- -0.06901404916763308

fit_area:

- 10

- 10

axis: 0

apply_to:

- /path/to/first/dataset

- kind: processing

type: BaselineCorrection

properties:

parameters:

kind: polynomial

order: 0

coefficients:

- -0.07042420227050784

fit_area:

# ... remainder same as above

apply_to:

- /path/to/second/dataset

# ...

essential information regularly remains unaccounted for,
such as details regarding the sample, the purpose of the
measurement, and probehead and cooling system used.
Whether the sample temperature is recorded depends on
the setup used, and benchtop spectrometers are typically
more integrated and therefore tend to record more para-
meters. In any case, it is the responsibility of the sci-
entist performing the measurements to record the miss-
ing information, at best in an electronic format that can
be read directly by the analysis software. One such �le
format, termed `info �le format' has been developed by
one of the authors and successfully employed over more
than ten years. For details see section 2. Regardless of the
actual �le format used, it is important to record the miss-
ing information during data acquisition and to provide it
in a machine-readable form for the analysis software.

In terms of vendor �le formats, the cwepr Python pack-
age currently supports the di�erent Bruker �le formats for
the old ESP and EMX spectrometer series as well as the
newer BES3T format. Additionally, Magnettech XML �les
can be read, and as a last resort, bare text �les (CSV and
alike) can be imported. The latter, however, usually lack
any metadata. Thanks to the highly modular architec-
ture of the cwepr package, adding importers for additional
�le formats is simple and straight-forward. Details can be
found in the package documentation available online [13].
What is much more relevant for the user of the package:
File formats will be auto-detected and the respective im-
porter chosen.3 If you ever need to control in more detail
which importer is used, and e.g. in case of CSV data,
provide additional parameters, this is possible as well dir-
ectly within the recipe.

All further steps operating on datasets, such as data
processing and analysis, plotting, report generation, and
export, are summarised under the term `tasks' and de�ned
in the tasks: block of a recipe, respectively. For each
task, one can de�ne which datasets it should be applied to
and provide a wealth of additional necessary and optional
parameters. A bit more details will be provided below for
each kind of task.

3.2. Data processing

Data processing is a necessary prerequisite for data
analysis, and therefore separate from the latter. The main
e�ort in spectroscopy is usually not recording the raw data,
but processing and analysing those data in order to answer
the questions that triggered the measurements in the �rst
place. The di�erence between processing and analysis in
context of the cwepr Python package: Processing steps op-
erate on datasets and always return (modi�ed) datasets,
while analysis steps operate on datasets and extract in-
formation, but may return everything from a scalar value
to a full (calculated) dataset, depending on the type of
analysis step.

3In software engineering terms, a factory pattern [15] is used here.
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The processing currently available within the cwepr
Python package can be categorised further: corrections,
simple algebra, normalisation, handling two-dimensional
datasets, and working with multiple datasets.

Corrections contain magnetic �eld calibration, micro-
wave frequency correction, and baseline correction. Mag-
netic �eld calibration usually consists of measuring a ref-
erence sample with known g value, extracting the meas-
ured magnetic �eld value for the line and calculating a
scalar o�set that can afterwards be applied to the magnetic
�eld axis of the dataset of the unknown sample. Technic-
ally speaking, magnetic �eld calibration is hence a series
of an analyis step (�eld o�set calculation from measur-
ing the standard sample) and a processing step (applying
the o�set to the �eld axis of the actual data). Microwave
frequency correction is a linear algebraic operation essen-
tially shifting the magnetic �eld axis. It is a prerequis-
ite for any meaningful comparison of di�erent measure-
ments, as any single measurement will be recorded at an
at least slightly di�erent microwave frequency to any other.
Baseline correction is usually performed in terms of �tting
a polynomial of n-th degree to (parts of) the data and
afterwards subtracting the polynomial. A zeroth-order
baseline correction (o�set correction) can (and should) al-
ways safely be applied. First-order baselines (linear drifts)
are frequently encountered, too. Higher-order polynomials
should rarely be used. Often, it is more sensible to record
a background spectrum and subtract this afterwards.

Simple algebra involves applying a scalar value by ad-
dition, subtraction, multiplication, or division to the in-
tensity values of a recorded spectrum. Typical scenarios
for multiplying the intensity values of a cw-EPR spectrum
with a scalar factor are comparing spectra resulting from
a single species to those known to originate from multiple
species, or di�erent (known) concentrations. Adding and
subtracting scalars can of course be used conveniently to
separate traces within a plot, but are probably less import-
ant in terms of actual analysis. Furthermore, dedicated
plotters are available for the stacked display of spectra.
Particulary with older spectrometers, multiple scans are
usually recorded in an additive fashion, meaning that the
resulting intensities are the sums of the intensities of the
individual scans rather than their average. The same is
true with the receiver gain setting. Therefore, in those
cases, for meaningful (semi-)quantitative comparison of
di�erent measurements, data need to be corrected for the
same number of scans and the same receiver gain setting
by dividing the signal intensity by the appropriate scalar
value.

Normalising data to some common characteristics is a
prerequisite for comparing datasets among each other. A
number of normalisations are common to nearly every kind
of data: normalisation to maximum, minimum, amplitude,
and area. Which kind of normalisation works best depends
highly on the given situation and the intent. Comparing
di�erences in line shapes, such as broadening or narrowing,
usually requires scaling to maximum, minimum, or amp-

litude. The meaning of normalising to area is less straight-
forward for cw-EPR spectra, as usually, �rst-derivative
line shapes are encountered. Given appropriate measure-
ment conditions (no saturation, no line broadening due to
overmodulation, proper phasing), the cw-EPR signal in-
tensity should be proportional to the number of spins in
the active volume of the probehead. Therefore, with all
crucial experimental parameters directly a�ecting the sig-
nal strength being equal (microwave power, modulation
amplitude), normalising to same area should be the most
straight-forward way of comparing two spectra in a mean-
ingful way. However, bare in mind that this is only valid
for absorptive (zeroth-derivative or zeroth harmonic) spec-
tra. While it is the user's responsibility to decide which
type of normalisation is best, the cwepr Python package
makes it pretty simple to apply. Even better: Normal-
isations can be applied to a given range, and the range
provided in axis values (e.g., mT) as well as indices (e.g.,
indices 35�42), whatever �ts better in the given context.
An example involving real data will be given in the next
section, showcasing the elegance and power of the user in-
terface particularly when it comes to more complicated
data processing.

Two-dimensional datasets are encountered in cw-EPR
spectroscopy in di�erent �avours. Depending on the spec-
trometer and measurement software used, microwave power
and modulation amplitude variations as well as goniometer
sweeps are either recorded as separate datasets (one data-
set per trace) or as two-dimensional dataset. Furthermore,
kinetics measurements that can be used as well to record
independent scans and to prevent averaging within the
software are other use-cases for two-dimensional datasets.
In all these cases, typical operations on two-dimensional
datasets are slice extraction, averaging, and projection
along one axis. Slice extraction and averaging allow again
to provide the slice or average in terms of indices or axis
values. In case of the latter, values are interpolated to the
nearest neighbour on the grid spanned by the axis values.

The last category of processing steps mentioned here
involves operating on multiple datasets in terms of `dataset
algebra', i.e. adding, subtracting, and averaging multiple
datasets. As mentioned already, subtracting a separately
recorded background signal from the signal of a sample is
a typical use-case. Due to microwave frequency correction,
each dataset has its individual magnetic �eld axis. There-
fore, to add, subtract, or average multiple datasets, �rst,
a common axis range needs to be extracted and the data
points interpolated to a common grid. Here, metadata ac-
companying the numerical data and stored in the datasets
come in quite handy, as they allow for automatically decid-
ing whether two axes are compatible. As sometimes, axis
labels will di�er in their names but still be compatible, you
are free to explicitly override this check. In any case, data-
set algebra is always a two-step process: (i) extracting a
common range for a series of datasets, and (ii) performing
the actual dataset algebra, such as adding, subtracting or
averaging the data.
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3.3. Data analysis

In nearly all cases, data analysis needs to be preceded
with data processing. While processing steps can often be
automated to a large extend and are rather generally ap-
plicable, data analysis is usually much more focussed on
individual types of measurements and the actual questions
at hand. As a reminder: In context of the cwepr Python
package, processing and analysis steps di�er technically in
their results. While both operate on datasets, processing
steps always return an (altered) dataset, while analysis
steps may return everything from a scalar to a complete
(calculated) dataset that can be operated on in the same
way as any other dataset, including graphical representa-
tions and further processing and analysis.

Most important, the analysis steps provided by the
cwepr package are generally meant as basic building blocks
to be used in arbitrarily complex overall analyses, consist-
ing of large lists of processing and analysis steps, usu-
ally interspersed with plotting steps for graphical feed-
back. Eventually, the possibilities are only limited by
the user's creativity and imagination. This is the focus
and power of the cwepr package: freeing the users from
dealing with the implementation details of each individual
processing and analysis step and allowing them to cre-
atively combine the di�erent tasks in a fully transparent
manner. To make it even better: Everything is fully re-
producible, and repeatedly replaying and systematically
modifying a complicated analysis is as simple as modify-
ing a highly descriptive text �le. For more complicated
and time-consuming tasks, the analysis can even be run
fully unattended and in parallel.

Concrete analysis steps include extracting basic charac-
teristics (minimum, maximum, amplitude, and area) and
statistics (mean, median, standard deviation, and vari-
ance), peak �nding, signal-to-noise estimation, polynomial
�ts and linear regression with �xed intercept. Besides
these rather general tasks, a series of analysis steps spe-
ci�c for cw-EPR spectroscopy is available as well, such as
�eld calibration (obtaining a �eld o�set value given the
measurement of a standard sample with known g value),
linewidth detection (peak-to-peak, fwhm), and analysis
of systematically varied modulation amplitude and mi-
crowave power. Results of analysis steps returning either
scalar values or lists of values for an individual dataset
can be aggregated into a (calculated) dataset. Thus, one
could e.g. integrate a series of datasets, calculate the area
under the respective curve (under ideal conditions propor-
tional to the concentration of paramagnetic species) and
plot the results as a function of the datasets (or any value
characteristic for the series of datasets) or return a table of
values. Both would make for a decent (semi-)quantitative
analysis of cw-EPR data.

Eventually, �tting spectral simulations to the recorded
data can be regarded as analysis steps as well. Usually,
they are the only way to extract parameters such as g or
hyper�ne splitting values from cw-EPR data with su�-
cient accuracy. As mentioned already, these tasks are not

and will not be part of the cwepr Python package, but
analysis steps provide the interface to packages dedicated
to this purpose that are currently being developed [16, 17].

3.4. Data representation: plotting

Graphically representing the results of processing (and
analysis) steps is of paramount importance in data ana-
lysis, not only as means of �nally presenting the results,
but for ensuring that the individual tasks performed on
the data give sensible results. Furthermore, given that
datasets contain both, (numerical) data as well as accom-
panying metadata, correct axes labels can (and will) be
created fully automatically. By using the Matplotlib lib-
rary [18] of the scienti�c Python stack, publication-quality
�gures are readily available.

Three general types of plotters are available: plotters
for single datasets and for multiple datasets, and com-
posite plotters consisting of other plotters arranged in a
grid within one �gure. For individual datasets, 1D and
2D plotters are available, for multiple datasets, only 1D
plots are possible. Speci�cally for cw-EPR spectroscopy,
plotters for representing angular-dependent measurements
(i.e., goniometer sweeps) and the results of power satura-
tion analysis have been implemented.

3.5. Report generation: accessing information

While plotters are an excellent way to obtain publica-
tion-quality �gures without hassle, and the recipe history
automatically created contains all information necessary
to fully reproduce and replay the tasks, there is a lot more
of information contained in the datasets and potentially
the recipes as well. The latter is even more true in light
of recipes supporting adding comments to each individual
task, as well as �gure captions to plotters. Hence, being
able to automatically create well-formatted reports using
pre-de�ned templates opens an entirely new dimension in
terms of comparing di�erent datasets and work�ows, be-
sides presenting the results of the research.

Key to report generation is using a template engine
thus separating the �le format of the �nal report from the
logic used for �lling in the contents in the template from
the data source (usually a dataset). Template engines have
�ourished due to the needs of modern web development,
and are here used to create well-formatted reports con-
taining all information available from within a dataset.
Currently, the most mature templates supported by the
cwepr Python package, by means of the underlying AS-
pecD framework, are LATEX templates presenting the con-
tents of single datasets, including details for each task and
a full list of �gures. Even more, given a LATEX installation,
one can compile the report into a PDF �le straight from
within a recipe. An example of such a report is provided
in section 6.

While plots are already quite complex due to the amount
of parameters one can tweak, reports provide yet another
level of complexity. Automatically generating not only the
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�gures for a manuscript or thesis, but as well the captions,
and having them included in the main text, is only one
possible application. Besides that, generating reports of
(complex) routine processing and analysis work�ows for
individual datasets provides means to easily compare the
results. Never underestimate the power of well-formatted
and uniform reports allowing to focus on the di�erences
rather than having to �nd the parameters to compare in
di�erent places. This again shows the design philosophy
as well as the potential of the cwepr Python package for
analysing data, as it allows to focus on the important as-
pects while fully transparently automating all the routine
work and ensuring full reproducibility.

3.6. Data export and supported formats

As most data processing and analysis tasks are not too
time-consuming and can always be repeated starting from
the raw data, saving the resulting processed datasets may
not be an immediate need. Nevertheless, for more complex
tasks this may change. Therefore, two particular formats
for datasets are supported by the cwepr package by means
of the underlying ASpecD framework: the `Advanced Sci-
enti�c Data Format' (ASDF) [19] and a format particularly
developed for the ASpecD framework and termed `ASpecD
Dataset Format' (ADF). Both are fully self-contained, i.e.,
come with their own speci�cation, and are thus platform-
independent, relying on well-developed standards. Fur-
thermore, for a maximum of interoperability, data can be
exported to plain text. Note, however, that in this case
usually all metadata accompanying the data will be lost,
rendering this a choice of last resort. As with data im-
port, writing own exporters is both, straight-forward and
simple. Details can be found in the documentation avail-
able online [13]. Some general aspects of extending the
cwepr package are provided in the next section.

4. Extending the cwepr package

The cwepr Python package is based on the ASpecD
framework providing all functionality necessary for full
reproducibility as well as for recipe-driven data analysis.
Due to the modular nature of the ASpecD framework, it is
comparably easy and straight-forward to extend the cwepr
package. Basically, the cwepr package can be thought of
as an extension of the ASpecD framework focussing on the
particular needs of cw-EPR spectroscopy.

Due to using the paradigma of object-oriented pro-
gramming [20], developers can focus on implementing the
actual functionality by simply inheriting from the correct
class of the ASpecD framework, rather than caring about
the mechanisms ensuring reproducibility. An example for
a class of the cwepr package is given in Listing 5. While
this is an analysis step, implementing a processing step
would be similar. The actual functionality is implemen-
ted in the method _perform_task. Here, additionally the
applicability of the analysis step is checked for using the

method applicable. Additionally, if users can provide
parameters, these parameters need to be checked. For
this purpose, the method _sanitise_parameters can be
implemented and will be called automatically. The para-
meter description set in the constructor provides a short
description of the analysis step that can, e.g., be included
in a report detailing all the individual processing and ana-
lysis steps performed on a dataset.

In a similar vein, processing steps, plotters, importers,
exporters, and alike can be implemented. Depending on
the algorithms used, the implementations may be more
involved than that shown in Listing 5, probably spanning
several (private) methods. Of course, as with every frame-
work, extending the cwepr package requires to be familiar
with the concepts of the underlying ASpecD framework.
For further details, see the documentation of the cwepr
package [13] and the ASpecD framework [14] available on-
line as well as the source code of both packages.

When implementing extensions to the cwepr package,
ideally, unit tests should be provided as well. The ASpecD
framework is developed fully test-driven (i.e., test-�rst),
and we aim at providing a good test coverage for the cwepr
package as well.
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Listing 5: Stripped-down example of the peak-to-peak linewidth analysis step implementation contained in the cwepr package. The doc-
strings have been shortened to focus on the important aspects. Thanks to inheriting from the ASpecD framework, developers can focus
on implementing the actual functionality in the method _perform_task. Here, additionally the applicability of the analysis step is checked
for using the method applicable. Additionally, if user-provided parameters need to be checked, the method _sanitise_parameters can be
implemented and gets called automatically. For further details, see the documentation of the cwepr package [13] and the ASpecD framework
[14] available online.

class LinewidthPeakToPeak(aspecd.analysis.SingleAnalysisStep):

""" Peak to peak linewidth in derivative spectrum."""

def __init__(self):

super().__init__ ()

self.description = "Determine peak -to-peak linewidth"

@staticmethod

def applicable(dataset):

"""

Check whether analysis step is applicable to the given dataset.

Line width detection can only be applied to 1D datasets.

"""

return dataset.data.data.ndim == 1

def _perform_task(self):

index_max = np.argmax(self.dataset.data.data)

index_min = np.argmin(self.dataset.data.data)

linewidth = abs(self.dataset.data.axes [0]. values[index_min] -

self.dataset.data.axes [0]. values[index_max ])

self.result = linewidth

5. Recipe-driven data analysis vs. `plain' Python

Basically, recipe-driven data analysis can be thought
of a special type of user interface to the cwepr Python
package (and the underlying ASpecD framework). The
normal user of such package has a clear idea how to pro-
cess and analyse data, but is not necessarily interested in
(or capable of) actually programming a lot. Furthermore,
reproducible science requires the history of each and every
processing and analysis step to be recorded and stored in
a way that can be used and understood long after the
steps have been carried out (decades rather than weeks or
months).

From the user's perspective, all that is required is a
human-writable �le format and a list of datasets followed
by a list of tasks to be performed on these datasets. For
each task, the user will want to provide all necessary para-
meters. Eventually, the user is providing the metadata of
the data analysis, such as Listing 6.

Of course, everything that can be done using a recipe
and recipe-driven data analysis can be coded in `plain'
Python as well. Actually, the cwepr package is a regu-
lar Python package and provides a well-documented API
[13]. Therefore, it can be easy integrated into other down-
stream pipelines such as simulation and �tting. To make
the point, Listing 7 provides the implementation of the
recipe presented in Listing 6 in Python using all the high-
level functionality (i.e., the domain-speci�c language for

Listing 6: Example of a simple recipe for recipe-driven data ana-
lysis within the cwepr Python package. Here, two basic processing
steps are applied to two datasets and the results afterwards plotted
individually for each dataset. For an implementation of the same
functionality in `plain' Python, cf. Listing 7

format:

type: ASpecD recipe

version: '0.2'

settings:

default_package: cwepr

datasets:

- /path/to/first/dataset

- /path/to/second/dataset

tasks:

- kind: processing

type: FrequencyCorrection

properties:

parameters:

frequency: 9.5

- kind: processing

type: BaselineCorrection

- kind: singleplot

type: SinglePlotter1D

properties:

filename:

- first -dataset.pdf

- second -dataset.pdf
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Listing 7: Python code performing the same tasks as the recipe in
Listing 6. Only in this rather simplistic case, a single loop could be
used. Furthermore, despite the intrinsic readability of Python code,
the recipe is much easier to understand and does not require any
programming skills.

import aspecd

import cwepr

dataset_filenames = ['/path/to/first/dataset ',

'/path/to/second/dataset ']

figure_filenames = ['first -dataset.pdf',

'second -dataset.pdf']

importer_factory = cwepr.io.ImporterFactory ()

frequency_correction =

cwepr.processing.FrequencyCorrection ()

frequency_correction.parameters =

{"frequency": 9.5}

baseline_subtraction =

aspecd.processing.BaselineCorrection ()

plotter = aspecd.plotting.SinglePlotter1D ()

for idx , source in enumerate(dataset_filenames):

dataset = cwepr.dataset.ExperimentalDataset ()

importer =

importer_factory.get_importer(source)

dataset.import_from(importer)

dataset.process(frequency_correction)

dataset.process(baseline_subtraction)

plot = dataset.plot(plotter)

saver = aspecd.plotting.Saver()

saver.filename = figure_filenames[idx]

plot.save(saver)

analysing cw-EPR data) provided by the cwepr package
and the ASpecD framework it is based upon.

It is not the lines of code (both are pretty much the
same) but the readability that is di�erent for a recipe and
the Python code. This is not to say that Python code
is hard to read, the opposite is true. Nevertheless, there
are di�erences in readability between any programming
language and a descriptive structural language such as
YAML. Furthermore, using a single loop in the Python
code as in the given example was only possible in this
simple case. Applying some tasks to a selection of data-
sets � while easy to implement in a recipe � is much more
involved in actual code.

Furthermore, the Python implementation presented in
Listing 7 does not provide a history similar to the recipe
history shown in the main text. Still, on a per-dataset
level, a history is written and accessible using, e.g., the re-
porting functionality of the cwepr package. Nevertheless,
any tasks depending and operating on multiple datasets
at once will not show up in the history of the individual
datasets. Therefore, recipes and their automatically writ-
ten history provide means for fully reproducible analysis
of multiple datasets not easily available otherwise.

6. Recipes for the examples

The examples given in the main text necessarily show
only essential parts of the recipes. Here, we document the
entire recipes that have been used to create the �gures
shown in the manuscript.

6.1. Compare a series of recorded spectra

Listing 8: Recipe used to compare cw-EPR data of a series of samples
recorded under nearly identical conditions. For a meaningful com-
parison of such a series of data, you need to perform a few processing
steps that can be applied to nearly every situation. This is a baseline
correction (polynomial, zeroth order) and a frequency correction. In
this particular case, a normalisation (amplitude) has been carried
out for easier comparing the di�erences in line shape. In a second
step, dat a have been smoothed using a Savitzky-Golay �lter, and
original and smoothed data displayed in a common �gure using a
CompositePlotter.

format:

type: ASpecD recipe

version: '0.2'

settings:

default_package: cwepr

autosave_plots: false

datasets:

- Sa732 -01

- Sa734 -01

- Sa736 -01

- Sa738 -01

tasks:

- kind: processing

type: BaselineCorrection

- kind: processing

type: FrequencyCorrection

properties:

parameters:

frequency: 9.48

- kind: processing

type: Normalisation

properties:

parameters:

kind: amplitude

- kind: multiplot

type: MultiPlotter1D

properties:

parameters:

show_legend: false

show_zero_lines: true

tight_layout: true

g-axis: false

properties:

axes:

xlim: [336, 340]

yticks: []

apply_to:

- Sa732 -01

- Sa734 -01

- Sa736 -01

- Sa738 -01

result: unfiltered

- kind: processing

type: Filtering

properties:

parameters:

type: savgol

window_length: 501

order: 5
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apply_to:

- Sa732 -01

- Sa734 -01

- Sa736 -01

- Sa738 -01

result:

- Sa732 -01- filtered

- Sa734 -01- filtered

- Sa736 -01- filtered

- Sa738 -01- filtered

- kind: multiplot

type: MultiPlotter1D

properties:

parameters:

show_legend: false

show_zero_lines: true

tight_layout: true

g-axis: false

properties:

axes:

xlim: [336, 340]

yticks: []

apply_to:

- Sa732 -01- filtered

- Sa734 -01- filtered

- Sa736 -01- filtered

- Sa738 -01- filtered

result: filtered

- kind: compositeplot

type: CompositePlotter

properties:

plotter:

- unfiltered

- filtered

parameters:

show_legend: false

show_zero_lines: true

tight_layout: false

properties:

figure:

size:

- 6.0

- 6.0

dpi: 100.0

filename: comparison -unfiltered -filtered.pdf

grid_dimensions: [2,1]

subplot_locations:

- [0, 0, 1, 1]

- [1, 0, 1, 1]

6.2. Power saturation analysis

Listing 9: Recipe used to perform a complete power saturation ana-
lysis. In a �rst step, the cw-EPR signal amplitude and square root of
the microwave power are returned as calculated dataset, afterwards
a linear regression performed over the �rst few points. The results
of both are graphically represented together, using a special plotter
adding a second axis with the actual microwave power values on top.

format:

type: ASpecD recipe

version: '0.2'

settings:

default_package: cwepr

autosave_plots: false

datasets:

- BDPA -2 DFieldPower

tasks:

- kind: processing

type: BaselineCorrection

- kind: singleanalysis

type: AmplitudeVsPower

apply_to:

- BDPA -2 DFieldPower

result: power_sweep_analysis

- kind: singleanalysis

type: PolynomialFitOnData

properties:

parameters:

order: 1

points: 5

return_type: dataset

apply_to:

- power_sweep_analysis

result: fit

comment: Linear fit covering the first five

å data points.

- kind: multiplot

type: PowerSweepAnalysisPlotter

properties:

properties:

drawings:

- marker: '*'

- color: red

grid:

show: true

axis: both

axes:

title: Overview

ylabel: '$EPR\ amplitude$ '

yticklabels: []

apply_to:

- power_sweep_analysis

- fit

result: overview

- kind: multiplot

type: PowerSweepAnalysisPlotter

properties:

properties:

drawings:

- marker: '*'

- color: red

grid:

show: true

axis: both

axes:

title: Detailed view

xlim: [0, 1.65]

ylim: [0, 70]

ylabel: '$EPR\ amplitude$ '

yticklabels: []

apply_to:

- power_sweep_analysis

- fit

result: details

- kind: compositeplot

type: CompositePlotter

properties:

plotter:

- overview

- details

filename: power_sweep_analysis.pdf

caption:

title: Power saturation analysis.

text: >

The left panel provides an overview of

å the entire measurement ,

while the right panel provides a detailed

å view of the first points ,
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showing that 1 mW of microwave power

å already starts to saturate the

cw-EPR signal.

grid_dimensions: [1, 2]

subplot_locations:

- [0, 0, 1, 1]

- [0, 1, 1, 1]

6.3. Subtracting a recorded background signal

Listing 10: Recipe used to subtract a recorded background signal
from cw-EPR spectra of a series of actual samples. To subtract the
background signal, the spectra need to be scaled in a meaningful
way. Here, a particular �eld range is used for scaling all spectra to
the same amplitude. The axis range is conveniently provided in axis
values (here: mT).

format:

type: ASpecD recipe

version: '0.2'

settings:

default_package: cwepr

autosave_plots: true

directories:

datasets_source: data_raw/

datasets:

- source: complex1

id: compound1

label: Complex 1

- source: complex2

id: compound2

label: Complex 2

- source: complex3

id: compound3

label: Complex 3

- source: tube2

id: background

label: 'Background '

tasks:

- kind: processing

type: FrequencyCorrection

properties:

parameters:

frequency: 9.84

comment: Frequency correction

- kind: processing

type: BaselineCorrection

properties:

parameters:

order: 0

percentage: [10 ,10]

comment: Baseline correction

- kind: multiplot

type: MultiPlotter1D

properties:

filename: baseline_freq_corr.png

properties:

figure:

dpi: 600

title: Baseline and frequency corrected

axes:

xlim: [250 ,400]

yticks: []

yticklabels: []

ylabel: '$Intensity$ / a.u.'

legend:

loc: 'lower left '

parameters:

show_legend: True

tight_layout: True

g-axis: True

comment: Plot after baseline and frequency

å correction

- kind: processing

type: Normalisation

properties:

parameters:

kind: amplitude

range: [357, 375] # in mT

range_unit: axis

apply_to:

comment: Normalisation to range of background

å signal

- kind: multiplot

type: MultiPlotter1D

properties:

filename: range_norm.png

properties:

figure:

dpi: 300

title: Normalised to background peak

axes:

xlim: [250 ,400]

ylim: [-3, 1]

yticks: []

yticklabels: []

ylabel: '$Intensity$ / a.u.'

legend:

loc: 'lower left '

parameters:

show_legend: True

tight_layout: True

g-axis: True

comment: Plot after normalisation to background

å signal

- kind: multiprocessing

type: CommonRangeExtraction

comment: Range extraction in preparation for

å subtracting background in DatasetAlgebra

- kind: processing

type: DatasetAlgebra

properties:

parameters:

kind: minus

dataset: background

apply_to:

- compound3

- compound1

- compound2

comment: Subtract background spectrum

- kind: multiplot

type: MultiPlotter1D

properties:

filename: background_subtracted.png

properties:

figure:

dpi: 300

title: Subtracted background
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axes:

xlim: [250 ,400]

ylim: [-3, 1]

yticks: []

yticklabels: []

ylabel: '$Intensity$ / a.u.'

legend:

loc: 'lower left '

parameters:

show_legend: True

tight_layout: True

g-axis: True

apply_to:

- compound1

- compound2

- compound3

comment: Figrue of background subtracted

å spectra.

- kind: processing

type: Normalisation

properties:

parameters:

kind: amplitude

comment: Normalisation on complete spectrum

- kind: singleplot

type: SinglePlotter1D

properties:

properties:

figure:

dpi: 300

axes:

ylabel: '$Intensity$ / a.u.'

drawing:

color: dodgerblue # all Matplotlib

å colors possible , also in Hex -Code

caption:

title: >

Background corrected spectrum of complex

å 1.

text: >

Resulting spectrum after the background

å correction.

parameters:

show_legend: True

tight: x

tight_layout: True

g-axis: True

apply_to:

- compound1

comment: Singleplotter for background spectrum

å with generic filename.

- kind: multiplot

type: MultiPlotter1D

properties:

filename: final.png

properties:

figure:

dpi: 300

title: Final figure

axes:

xlim: [250 ,400]

yticks: []

yticklabels: []

ylabel: '$Intensity$ / a.u.'

legend:

loc: 'lower left '

caption:

title: >

Background corrected spectra of all

å compounds.

text: >

After background subtraction , all

å spectra were again normalised to

å the

full amplitude.

parameters:

show_legend: True

tight_layout: True

g-axis: True

apply_to:

- compound1

- compound2

- compound3

comment: Background corrected spectra , complete

å view

- kind: export

type: TxtExporter

properties:

target:

- data/compound1.txt

apply_to:

- compound1

comment: >

Data exported to a txt file with magnetic

å field values in the first and

intensity values in the second column. The

å file is stored in the

directory "data" which first has to be

å created.

- kind: report

type: LaTeXReporter

properties:

template: dataset.tex

filename:

- report_compound1.tex

compile: true

apply_to:

- compound1

comment: >

Aggregation of all steps on the background

å dataset to give it a readable

form.

The PDF output of the report task follows on the next
pages. Besides covering details of all the tasks performed
on the dataset and including the created plots as �gures,
the dataset report contains all the metadata stored within
the dataset (and read from an info �le upon import). Fur-
thermore, the last section of the report lists all packages
used, together with their versions.
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Dataset report

— mirjam, 2021-12-10 19:27:18

1 Overview

Source: complex1
Label: Complex 1

This is an experimental dataset with 7 processing steps, 0 analyses, 1 annotation, 1 representation, and
8 total tasks. For details, see below. Information on how this report has been generated and how to cite
the underlying software are given at the end.

2 Processing steps

In total, 7 processing steps have been carried out:

1. Correct magnetic field axis for given frequency

2. Correct baseline of dataset

3. Normalise data

4. Interpolate data of dataset

5. Extract common data range of several datasets

6. Perform algebra using two datasets

7. Normalise data

For details of the individual processing steps, see below.

2.1 Correct magnetic field axis for given frequency

This processing step is not undoable.

Parameters

frequency 9.84

Comment: Frequency correction

2.2 Correct baseline of dataset

This processing step is undoable.

Parameters

kind polynomial
order 0
coefficients [-1.20234879]
fit_area [10, 10]
axis 0
percentage [10, 10]

Comment: Baseline correction

1

2.3 Normalise data

This processing step is undoable.

Parameters

kind amplitude
range [357, 375]
range_unit axis
noise_range None
noise_range_unit percentage

Comment: Normalisation to range of background signal

2.4 Interpolate data of dataset

This processing step is undoable.

Parameters

range [[241.48692686 422.15552723]]
npoints [8166]
unit axis

2.5 Extract common data range of several datasets

This processing step is undoable.

Parameters

ignore_units False
common_range [[241.48692685786594, 422.15552723018635]]
npoints [8166]

2.6 Perform algebra using two datasets

This processing step is not undoable.

Parameters

dataset background
kind minus

Comment: Subtract background spectrum

2.7 Normalise data

This processing step is undoable.

Parameters

kind amplitude
range None
range_unit index
noise_range None
noise_range_unit percentage

Comment: Normalisation on complete spectrum
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Figure 1: Background corrected spectrum of complex 1. Resulting spectrum after the background
correction.

3 Annotations

In total, 1 annotation has been created:

1. Comment

3.1 Comment

Temperature shifted slightly to higher values during measurement.

4 Representations

In total, 1 representation has been created:

1. 1D plotting step for single dataset (Fig. 1)

3

5 Metadata

Please note: Due to better compatibility with LATEX, the parameter names listed below have been changed
from snake case (using the underscore “_” as word separator) to camel case (medial capitals) with respect
to their names in Python.

5.1 Measurement

label Complex 1

start 2021-09-26 16:21:00

end 2021-09-26 16:41:00

purpose Signal at low temperature

operator Jim Knopf

5.2 Sample

description Complex in solvent, frozen

solvent buffer

preparation John Doe

tube glass capillary sealed with clay

name Complex 1

id 10

5.3 Temperature

cryostat Cryogenic CF VTC

cryogen He

temperature 130.0 K

controller Lake Shore 350

5.4 Experiment

type field seewp

runs 1

variableParameter Field

increment 0.22

harmonic 1.0

5.5 Spectrometer

model Bruker ELEXSYS

software Bruker XEPR

5.6 Magnetic field

start 239.95 mT

stop 420.02801782009027 mT

sweepWidth 180.1 mT

stepWidth 0.0 G

points 8192.0

fieldProbeType Hall

fieldProbeModel xxx

sequence Up

controller Bruker EMX

powerSupply Bruker ER083 (200/60)

5.7 Microwave Bridge

model Bruker EMX premiumX

controller Bruker EMX

attenuation 20.0 dB

power 0.001997 mW

detection diode

frequencyCounter Bruker

mwFrequency 9.84 GHz

qValue 8900

5.8 Signal channel

model Bruker ELEXSYS

modulationAmplifier Bruker ELEXSYS

accumulations 2.0

modulationFrequency 100.0 kHz

modulationAmplitude 0.4 mT

receiverGain 49.0 dB

conversionTime 0.08192 ms

timeConstant 0.02048 ms

phase 0.0 deg
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5.9 Probehead

type dielectric

model Bruker ER4118X-MD5

coupling critical

Colophon

This report has been generated using the cwepr package that is based on the ASpecD framework. If you
use it in your research, please cite cwepr (doi:10.5281/zenodo.4896687, details: https://docs.cwepr.
de/), ASpecD (doi:10.5281/zenodo.4717937, details: https://docs.aspecd.de/) and the other packages
accordingly.

Packages: aspecd (0.6.4), numpy (1.21.4), matplotlib (3.4.3), bibrecord (0.1.0), jinja2 (3.0.3), oyaml (1.0),
asdf (2.8.1), scipy (1.7.2), cwepr (0.2.0).

Python version: 3.9.8 (main, Nov 12 2021, 14:53:26) [Clang 10.0.1 (clang-1001.0.46.4)]

Platform: macOS-10.14.6 [...]
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6.4. Represent angular-dependent measurements

Listing 11: Recipe used to import and plot an angular-dependent
measurement with the GoniometerSweepPlotter. This plotter auto-
matically extracts the two slices at 0° and 180° as a sanity check as
those spectra should be the same.

format:

type: ASpecD recipe

version: '0.2'

settings:

default_package: cwepr

directories:

datasets_source: data_raw/

datasets:

- example1/RotationPattern -01

tasks:

- kind: processing

type: BaselineCorrection

- kind: singleplot

type: GoniometerSweepPlotter

properties:

properties:

figure:

dpi: 300

axes:

xlim: [349, 353]

filename: output1.png

6.5. Comparison of data recorded at X and Q band

Listing 12: Recipe used to compare cw-EPR data of the same sample
recorded at X and Q band. For a meaningful comparison, you need
to convert the magnetic �eld axis to a g axis. In this case, the
magnetic �eld was not calibrated, but for both measurements, an
external standard (Li:LiF) had been recorded. Therefore, �rst a
frequency and �eld correction needs to be carried out for both sets
of measurements.

format:

type: ASpecD recipe

version: '0.2'

settings:

default_package: cwepr

datasets:

- source: Sample -X

label: X-band

- LiLiF -X

- source: Sample -Q

label: Q-band

- LiLiF -Q

tasks:

- kind: processing

type: BaselineCorrection

- kind: processing

type: FrequencyCorrection

properties:

parameters:

frequency: 9.5

apply_to:

- Sample -X

- LiLiF -X

comment: Frequency correction for X band

- kind: processing

type: FrequencyCorrection

properties:

parameters:

frequency: 34.0

apply_to:

- Sample -Q

- LiLiF -Q

comment: Frequency correction for Q band

- kind: singleanalysis

type: FieldCalibration

properties:

parameters:

standard: LiLiF

apply_to:

- LiLiF -X

result: field -offset -X

comment: Field offset for X band

- kind: singleanalysis

type: FieldCalibration

properties:

parameters:

standard: LiLiF

apply_to:

- LiLiF -Q

result: field -offset -Q

comment: Field offset for Q band

- kind: processing

type: FieldCorrection

properties:

parameters:

offset: field -offset -X

apply_to:

- Sample -X

comment: Field correction for X band

- kind: processing

type: FieldCorrection

properties:

parameters:

offset: field -offset -Q

apply_to:

- Sample -Q

- LiLiF -Q

comment: Field correction for Q band

- kind: processing

type: GAxisCreation

apply_to:

- Sample -X

- Sample -Q

result:

- Sample -X-gaxis

- Sample -Q-gaxis

comment: Convert magnetic field axis to g axis

- kind: processing

type: Normalisation

properties:

parameters:

kind: amplitude

apply_to:

- Sample -X-gaxis

- Sample -Q-gaxis

comment: Normalise to amplitude for easier

å comparison

- kind: multiplot

type: MultiPlotter1DStacked

properties:

parameters:

show_legend: true

show_zero_lines: false

tight_layout: true

g-axis: false

offset: null

properties:

axes:

xlim: [2.007 , 1.999]
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grid:

show: true

axis: x

filename: x-q-comparison.pdf

caption:

title: >

Comparison of the cw -EPR spectra of the

å same substance recorded at

X and Q band.

text: >

The splitting observed at Q band and not

å visible at X band

can be attributed to g anisotropy.

å Furthermore , only conversion

of the magnetic field axis to a g axis

å allows for directly

comparing the spectra obtained at

å different fields and frequencies.

apply_to:

- Sample -Q-gaxis

- Sample -X-gaxis

7. Graphical frontend for recipes

Although the YAML �le format is remarkably simple
to write by hand, the mere number of options that can
be set for certain tasks (in particular plotting tasks) can
be daunting. Furthermore, a tool helping with automatic-
ally creating a recipe from its building blocks dramatically
reduces the chance of problems due to wrong formatting,
especially with respect to indentation. As this is a prob-
lem not special for the cwepr package, but common to all
packages derived from the ASpecD framework, we are cur-
rently developing a graphical frontend in form of a WebUI
for this purpose, based on the Python Flask framework.
A preview of the already working prototype is shown in
Fig. 1. This prototype has been used in part to create
the recipes showcased in the main text and documented
above.

The graphical frontend allows to load datasets, add and
remove them from the recipe, preview, edit, and add tasks
to the recipe, and �nally cook the recipe and serve the
results. Furthermore, the messages usually printed to the
command line when cooking a recipe are displayed as well.
Taken together, we anticipate the WebUI to make working
with the cwepr package even simpler, particularly for non-
spectroscopists. In the future, the WebUI will probably
even be able to directly display the results of graphical
representations, making recipe-driven data analysis more
interactive and helping with exploratory analyses.

Using web technologies makes the graphical frontend
intrinsically platform-independent, and working with a web
framework such as Flask is much simpler than implement-
ing a GUI with one of the usual GUI frameworks (GTK,
Qt). Furthermore, GUI programming is a rather complex
topic on its own, particularly when focussing on modular
code following best practices of software engineering.

The WebUI will be made available open-source and
free of charge as a Python package under comparable con-

ditions as the ASpecD framework and the cwepr package.
The frontend is designed to run on your local computer,
not on a web server accessible from the outside. Although
the latter would be technically possible, this immediately
raises security concerns that are currently not being dealt
with, such as access control and data protection. However,
we will provide detailed documentation on how to locally
install and deploy the WebUI and even run it inside a
Docker container for better isolation.
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